Amazon RDS to Snowflake

This page provides you with instructions on how to extract data from Amazon RDS and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Amazon RDS?

Amazon RDS (relational database service) lets users spin up cloud-based database instances without worrying about infrastructure provisioning or software maintenance or many of the administrative tasks involved in running a database on premises.

Cloud platforms can scale up or down quickly to meet changing demands. RDS takes advantage of that capability to let users add database instances to as needed. It offers automatic backup and recovery for database instances, and can replicate data across multiple zones for high availability.

RDS supports six different database engines: Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and Microsoft SQL Server.

What is Snowflake?

Snowflake is a cloud-based data warehouse implemented as a managed service. It runs on the Amazon Web Services architecture using EC2 and S3 instances. Snowflake is designed to be fast, flexible, and easy to work with. For instance, for query processing, Snowflake creates virtual warehouses that run on separate compute clusters, so querying one virtual warehouse doesn't slow down the others.

Getting data out of Amazon RDS

The most common way to get data out of any database is to write SQL SELECT queries. As part of any query you can join tables, specify filters, and sort and limit results.

Preparing data for Snowflake

Depending on the structure of your data, you may need to prepare it for loading. Look at the supported data types for Snowflake and make sure that the data you've got will map neatly to them.

Note that you don't need to define a schema in advance when loading JSON data into Snowflake.

Loading data into Snowflake

The Snowflake documentation's Data Loading Overview section can help you with the task of loading your data. If you're not loading a lot of data, you might be able to use the data loading wizard in the Snowflake web UI, but chances are the limitations on that tool will make it a non-starter as a reliable ETL solution. Alternatively, there are two main steps for getting data into Snowflake:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You’ll have the option of copying from your local drive or from Amazon S3. One of Snowflake's slick features lets you make a virtual warehouse that can power the insertion process.

Keeping Amazon RDS data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

The key is to build your script in such a way that it can identify incremental updates to your data. You can identify key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in your database.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Microsoft Azure SQL Data Warehouse, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Panoply, To Azure SQL Data Warehouse, and To S3.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to move data from Amazon RDS to Snowflake automatically. With just a few clicks, Stitch starts extracting your Amazon RDS data via the API, structuring it in a way that's optimized for analysis, and inserting that data into your Snowflake data warehouse.